Thursday, December 8, 2016

Dogs and wolves MRCA 33,000 YBP


Dogs may be older than previously thought.
The origin of dogs has inspired a lingering controversy in academia. Where and when did dogs first split off from wolves? One of the top dogs in this dispute, population genetics expert Peter Savolainen of Sweden's KTH Royal Institute of Technology, isn't about to roll over. He hopes his latest research will finally settle the matter.

Some researchers say canines first split off from wolves in the Middle East; others say it happened in Europe. But Savolainen has long held that dogs originated in South East Asia alone, and he says his team has compiled new evidence that confirms his earlier findings.

The study concludes that the split with wolves occurred about 33,000 years ago.

Savolainen's earlier studies were based on analysis of mitochondrial DNA. But recently other researchers have used data from nuclear DNA to refute those findings, arguing that dogs originated in the Middle East, Central Asia or Europe.

But apparently, those researchers were thrown off the scent, according to Savolainen. The data they relied on did not include samples from South East Asia, he says. So if, as Savolainen says, dogs did indeed come from South East Asia, these studies would not have been able to detect it.

"Which is why we analysed the entire nuclear genome of a global sample collection from 46 dogs, which includes samples from southern China and South East Asia," he says. "We then found out that dogs from South East Asia stand out from all other dog populations, because they have the highest genetic diversity and are genetically closest to the wolf."

Savolainen says this provides strong evidence that the dog originated in South East Asia, which confirms his earlier studies of Mitochondrial DNA.

"We also found that the global dog population is based on two important events: the dog and wolf populations first began to split off about 33,000 years ago in South East Asia. The global spread of dogs followed about 18,000 years later.

He says one explanation for the split between dogs and wolves 33,000 years ago could be that the wolf population became divided and the south Chinese wolf developed into dogs. In that case, it is possible the global spread of dogs out of South East Asia is associated with domestication.

"The dog's story thus appears to have begun 33,000 years ago, but the exact path to the fully-domesticated dogs that spread throughout the world 15,000 years ago is not yet clear."


Citation

Guo-Dong Wang, Weiwei Zhai, He-Chuan Yang, Lu Wang, Li Zhong, Yan-Hu Liu, Ruo-Xi Fan, Ting-Ting Yin, Chun-Ling Zhu, Andrei D Poyarkov, David M Irwin, Marjo K Hytönen, Hannes Lohi, Chung-I Wu, Peter Savolainen, Ya-Ping Zhang. 2015. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Research, DOI: 10.1038/cr.2015.147

Dogs can recognise emotions

For the first time, researchers have shown that dogs must 
form abstract mental representations of positive and 
negative emotional states, and are not simply displaying 
learned behaviours when responding to the expressions
of people and other dogs. Photo credit: University of
Lincoln.
Dogs can recognise emotions in humans by combining information from different senses – an ability that has never previously been observed outside of humans, a new study published today reveals.

For the first time, researchers have shown that dogs must form abstract mental representations of positive and negative emotional states, and are not simply displaying learned behaviours when responding to the expressions of people and other dogs.

The findings from a team of animal behaviour experts and psychologists the University of Lincoln, UK, and University of Sao Paulo, Brazil, are published in the Royal Society journal Biology Letters.

The researchers presented 17 domestic dogs with pairings of images and sounds conveying different combinations of positive (happy or playful) and negative (angry or aggressive) emotional expressions in humans and dogs. These distinct sources of sensory input – photos of facial expressions and audio clips of vocalisations (voices or barks) from unfamiliar subjects – were played simultaneously to the animals, without any prior training.

The team found the dogs spent significantly longer looking at the facial expressions which matched the emotional state (or valence) of the vocalisation, for both human and canine subjects.

The integration of different types of sensory information in this way indicates that dogs have mental representations of positive and negative emotional states of others.

Researcher Dr Kun Guo, from the University of Lincoln’s School of Psychology, said: “Previous studies have indicated that dogs can differentiate between human emotions from cues such as facial expressions, but this is not the same as emotional recognition.

“Our study shows that dogs have the ability to integrate two different sources of sensory information into a coherent perception of emotion in both humans and dogs. To do so requires a system of internal categorisation of emotional states. This cognitive ability has until now only been evidenced in primates and the capacity to do this across species only seen in humans.”

Co-author Professor Daniel Mills, from the School of Life Sciences at the University of Lincoln, said: “It has been a long-standing debate whether dogs can recognise human emotions. Many dog owners report anecdotally that their pets seem highly sensitive to the moods of human family members.

“However, there is an important difference between associative behaviour, such as learning to respond appropriately to an angry voice, and recognising a range of very different cues that go together to indicate emotional arousal in another. Our findings are the first to show that dogs truly recognise emotions in humans and other dogs.

“Importantly, the dogs in our trials received no prior training or period of familiarisation with the subjects in the images or audio. This suggests that dogs' ability to combine emotional cues may be intrinsic. As a highly social species, such a tool would have been advantageous and the detection of emotion in humans may even have been selected for over generations of domestication by us.”

Citation

Albuquerque N, Guo K, Wilkinson A, Savalli C, Otta E, Mills D. Dogs recognize dog and human emotions. Biol. Lett., 2016 DOI: 10.1098/rsbl.2015.0883

Bandicoots Are Naïve to Dogs

Historical coexistence with dingoes may explain bandicoot avoidance 
of domestic dogs.Photo credit: Narawan Williams; CCAL.
Domestic dogs and cats were introduced to Tasmania two centuries ago, but bandicoots still fail to recognize these introduced predators as threats, according a study published September 7, 2016 in the open-access journal PLOS ONE by Anke Frank from University of Tasmania, Australia, and colleagues.

Worldwide, introduced predators have caused declines and extinctions of native wildlife, presumably in part because native species do not see novel predators as threats and thus fail to flee or defend themselves. But this naiveté is not necessarily forever: bandicoots in Sydney avoid backyards with domestic dogs. Interestingly, however, Sydney bandicoots do not avoid domestic cats even though they, like domestic dogs, were introduced about 200 years ago. This varying behavior to introduced predators has been attributed to the fact that dingoes arrived in mainland Australia 4000 years ago, predisposing Sydney bandicoots to avoid domestic dogs.

To test this hypothesis, Frank and colleagues assessed bandicoot behavior in Tasmania, where domestic dogs have been present for 200 years but where dingoes have never been present. The researchers surveyed 548 people in Hobart, Tasmania -- 37% of whom owned at least one dog and 20% of whom owned at least one cat -- about bandicoot sightings and scats in their backyards.

More than a quarter of participants reported that their pets had killed bandicoots, showing that predation from these introduced predators was a real threat. Even so, the survey showed that Tasmanian bandicoot sightings and scats were equally likely in backyards with or without domestic dogs or cats. These findings support the hypothesis that bandicoots on mainland Australia may recognize dogs as predators due to thousands of years of exposure to dingoes, and suggests that naiveté to introduced predators can ultimately be overcome.

"By using a citizen science approach, my collaborators and I found that -- unlike Australian mainland bandicoots -- bandicoots from the island state of Tasmania are naïve to domestic dogs," said Anke Frank. "This study supports our hypothesis that naiveté towards unfamiliar predators may eventually be overcome, but that in Tasmania 200 years of exposure have been an insufficient time for bandicoots to recognize cats as well as dogs as a threat."

Anke S. K. Frank, Alexandra J. R. Carthey, Peter B. Banks. 2016. Does Historical Coexistence with Dingoes Explain Current Avoidance of Domestic Dogs? Island Bandicoots Are Naïve to Dogs, unlike Their Mainland Counterparts. PLOS ONE, 2016; 11 (9): e0161447 DOI: 10.1371/journal.pone.0161447

The Sardinian Fonni's Dog and human migration

The Fonni’s Dog (Cane Fonnese or Sardinian Sheepdog) is
endemic to Sardinia and is known for its fiercely protective
guarding behaviors. Photo Credit: Stefano Marell
A genomic analysis of 28 dog breeds has traced the genetic history of the remarkable Fonni's Dog, a herd guardian endemic to the Mediterranean island of Sardinia. The results, published in the journal GENETICS, reveal that the regional variety has developed into a true breed through unregulated selection for its distinctive behavior, and that its ancestors came from the very same geographic areas as Sardinia's human migrants. Just as Sardinian people have long provided a wealth of genetic insights to scientists, the canine natives are an example of an isolated population that could prove a powerful resource for finding genes that influence health and behavior.

Fonni's Dogs (Cane Fonnese in Italian) are large, rugged dogs known for their wariness towards strangers and their intense facial expression. Although there are descriptions of these shephard's companions dating to at least the mid-nineteenth century, it is not officially recognized as a breed by most international registries, including the largest federation of kennel clubs, the Federation Cynologique Internationale.

"If you were to look at ten Fonni's Dogs, you would see there's a lot of variation in coat color and fur length. But they are all good protectors of their flocks. That's because nobody cares what they look like; they've been bred to do a job and to do it right," says study leader Elaine Ostrander of the National Human Genome Research Institute (NHGRI).

That job is guarding the possessions of their owner, to whom they are fiercely loyal. "Fonni's are also outstanding thieves," says Ostrander. "They can be trained to sneak over to the neighbors' and bring items home." While this particular duty isn't required by today's Fonni Dogs, written records from the mid-1800's indicate that thievery was part of their historical repertoire.

The island home of the Fonni's Dog has long held the interest of geneticists. Because Sardinia is geographically isolated, its human inhabitants share a unique ancestry and relatively low genetic diversity. Those characteristics make it easier to study genetic influences on disease and aging in Sardinians than in other human groups. Ostrander and other canine geneticists argue that each of the hundreds of different dog breeds also represents an isolated population that could be harnessed for genetic studies.

"Dogs get all the same diseases as humans, and there are lots of dog breeds with genetic predispositions, for example to particular types of cancer," Ostrander says. "Once we understand the genetic history of a breed we can search for disease genes in a much more powerful way than is possible in humans, enabling us to hone in on medically-relevant genes."

To better understand how the Fonni's Dog developed, scientists from the NHGRI, the University of Milan, and G. d'Annunzio University analyzed blood samples from Fonni's Dogs living in different parts of Sardinia and sequenced the whole genome of one of these dogs. To trace the Fonni's relationship to dogs from around the Mediterranean, the team compared the data to DNA from 27 other European, Middle Eastern, and North African breeds.

The data revealed that the Fonni's dog shows all the genetic hallmarks of being a breed, even though it developed in the absence of a regulated pedigree program and only arose through the tendency of Sardinian shepherds to choose their best guard dogs for breeding. The researchers compared individual dogs from within the same breed and across different breeds, quantifying many aspects of genome variation and genetic distinctiveness. All these measures confirmed that the Fonni's Dog, in genetic terms, is a breed.

The study also revealed the ancestors of the Fonni's Dog were related to the Saluki, a swift and graceful "sight" hound from the Near and Middle East, and a large mastiff like the Komondor, a powerfully-built sheep guardian from Hungary that looks a bit like a mop.

Strikingly, the origins of the Fonni's Dog mirror human migration to Sardinia. Studies of the island's human inhabitants have shown they share greatest genetic similarity with people from Hungary, Egypt, Israel, and Jordan. "The map we can draw of the dog's origins is the same as the map of human migration to Sardinia," says Ostrander. "Clearly ancient people traveled with their dogs, just as they do now."

The close parallels between the history of the dog and human inhabitants of the island has a practical implication, says Ostrander. "Our study shows how closely dog migration parallels human migration. It could be that if you have missing pieces in a study of a human population's history, samples collected from dogs in the right place could fill in those gaps."

The team plans next to study in greater detail eleven regions of the genome that likely make the Fonni's Dog distinct -- these may be responsible for their characteristically loyal and protective behavior.

Ostrander points out the study was a collaborative effort with scientists from Italy, including Sardinia, and says she is gratified to find so many researchers across the world interested in similar questions. Her group is hoping to work with colleagues in a range of countries to explore other so-called "niche" dog populations, regional varieties that often have a history of being bred for a particular job. Their goals are to better understand how dogs have evolved and to demonstrate yet another important job for these faithful human companions: tracking down disease genes.

Citation
D. L. Dreger, B. W. Davis, R. Cocco, S. Sechi, A. Di Cerbo, H. G. Parker, M. Polli, S. P. Marelli, P. Crepaldi, E. A. Ostrander. 2016. Commonalities in Development of Pure Breeds and Population Isolates Revealed in the Genome of the Sardinian Fonni's Dog. Genetics, 204 (2): 737 DOI: 10.1534/genetics.116.192427

A dual origin of domestic dogs

Man's best friend. Dogs were domesticated not once, but
twice in  different parts of the world. Photo Credit:
© lenaivanova2311 / Fotolia
The question, 'Where do domestic dogs come from?', has vexed scholars for a very long time. Some argue that humans first domesticated wolves in Europe, while others claim this happened in Central Asia or China. A new paper, published in Science, suggests that all these claims may be right. Supported by funding from the European Research Council and the Natural Environment Research Council, a large international team of scientists compared genetic data with existing archaeological evidence and show that man's best friend may have emerged independently from two separate (possibly now extinct) wolf populations that lived on opposite sides of the Eurasian continent. This means that dogs may have been domesticated not once, as widely believed, but twice.
A major international research project on dog domestication, led by the University of Oxford, has reconstructed the evolutionary history of dogs by first sequencing the genome (at Trinity College Dublin) of a 4,800-year old medium-sized dog from bone excavated at the Neolithic Passage Tomb of Newgrange, Ireland. The team (including French researchers based in Lyon and at the National Museum of Natural History in Paris) also obtained mitochondrial DNA from 59 ancient dogs living between 14,000 to 3,000 years ago and then compared them with the genetic signatures of more than 2,500 previously studied modern dogs.
The results of their analyses demonstrate a genetic separation between modern dog populations currently living in East Asia and Europe. Curiously, this population split seems to have taken place after the earliest archaeological evidence for dogs in Europe. The new genetic evidence also shows a population turnover in Europe that appears to have mostly replaced the earliest domestic dog population there, which supports the evidence that there was a later arrival of dogs from elsewhere. Lastly, a review of the archaeological record shows that early dogs appear in both the East and West more than 12,000 years ago, but in Central Asia no earlier than 8,000 years ago.
Combined, these new findings suggest that dogs were first domesticated from geographically separated wolf populations on opposite sides of the Eurasian continent. At some point after their domestication, the eastern dogs dispersed with migrating humans into Europe where they mixed with and mostly replaced the earliest European dogs. Most dogs today are a mixture of both Eastern and Western dogs -- one reason why previous genetic studies have been difficult to interpret.
The international project (which is combining ancient and modern genetic data with detailed morphological and archaeological research) is currently analysing thousands of ancient dogs and wolves to test this new perspective, and to establish the timing and location of the origins of our oldest pet.
Senior author and Director of Palaeo-BARN (the Wellcome Trust Palaeogenomics & Bio-Archaeology Research Network) at Oxford University, Professor Greger Larson, said: 'Animal domestication is a rare thing and a lot of evidence is required to overturn the assumption that it happened just once in any species. Our ancient DNA evidence, combined with the archaeological record of early dogs, suggests that we need to reconsider the number of times dogs were domesticated independently. Maybe the reason there hasn't yet been a consensus about where dogs were domesticated is because everyone has been a little bit right.'
Lead author Dr Laurent Frantz, from the Palaeo-BARN, commented: 'Reconstructing the past from modern DNA is a bit like looking into the history books: you never know whether crucial parts have been erased. Ancient DNA, on the other hand, is like a time machine, and allows us to observe the past directly.'
Senior author Professor Dan Bradley, from Trinity College Dublin, commented: 'The Newgrange dog bone had the best preserved ancient DNA we have ever encountered, giving us prehistoric genome of rare high quality. It is not just a postcard from the past, rather a full package special delivery.'
Professor Keith Dobney, co-author and co-director of the dog domestication project from Liverpool University's Department of Archaeology, Classics and Egyptology, is heartened by these first significant results. 'With the generous collaboration of many colleagues from across the world-sharing ideas, key specimens and their own data -- the genetic and archaeological evidence are now beginning to tell a new coherent story. With so much new and exciting data to come, we will finally be able to uncover the true history of man's best friend.'

Citation
L. A. F. Frantz, V. E. Mullin, M. Pionnier-Capitan, O. Lebrasseur, M. Ollivier, A. Perri, A. Linderholm, V. Mattiangeli, M. D. Teasdale, E. A. Dimopoulos, A. Tresset, M. Duffraisse, F. McCormick, L. Bartosiewicz, E. Gal, E. A. Nyerges, M. V. Sablin, S. Brehard, M. Mashkour, A. B l  escu, B. Gillet, S. Hughes, O. Chassaing, C. Hitte, J.-D. Vigne, K. Dobney, C. Hanni, D. G. Bradley, G. Larson. 2016. Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science, 2016; 352 (6290): 1228 DOI: 10.1126/science.aaf3161

Praise or food preference in dogs

Chowhound: Ozzie, a shorthaired terrier mix, was the only dog in the
experiments that chose food over his owner's praise 100 percent
of the time. "Ozzie was a bit of an outlier," Berns says,"but Ozzie's
owner understands him and still loves him." Credit: Gregory Berns
Given the choice, many dogs prefer praise from their owners over food, suggests a new study published in the journal Social, Cognitive and Affective Neuroscience. The study is one of the first to combine brain-imaging data with behavioral experiments to explore canine reward preferences.

"We are trying to understand the basis of the dog-human bond and whether it's mainly about food, or about the relationship itself," says Gregory Berns, a neuroscientist at Emory University and lead author of the research. "Out of the 13 dogs that completed the study, we found that most of them either preferred praise from their owners over food, or they appeared to like both equally. Only two of the dogs were real chow-hounds, showing a strong preference for the food."

Dogs were at the center of the most famous experiments of classical conditioning, conducted by Ivan Pavlov in the early 1900s. Pavlov showed that if dogs are trained to associate a particular stimulus with food, the animals salivate in the mere presence of the stimulus, in anticipation of the food.

"One theory about dogs is that they are primarily Pavlovian machines: They just want food and their owners are simply the means to get it," Berns says. "Another, more current, view of their behavior is that dogs value human contact in and of itself."

Berns heads up the Dog Project in Emory's Department of Psychology, which is researching evolutionary questions surrounding man's best, and oldest friend. The project was the first to train dogs to voluntarily enter a functional magnetic resonance imaging (fMRI) scanner and remain motionless during scanning, without restraint or sedation. In previous research, the Dog Project identified the ventral caudate region of the canine brain as a reward center. It also showed how that region of a dog's brain responds more strongly to the scents of familiar humans than to the scents of other humans, or even to those of familiar dogs.

For the current experiment, the researchers began by training the dogs to associate three different objects with different outcomes. A pink toy truck signaled a food reward; a blue toy knight signaled verbal praise from the owner; and a hairbrush signaled no reward, to serve as a control.

The dogs then were tested on the three objects while in an fMRI machine. Each dog underwent 32 trials for each of the three objects as their neural activity was recorded.

All of the dogs showed a stronger neural activation for the reward stimuli compared to the stimulus that signaled no reward, and their responses covered a broad range. Four of the dogs showed a particularly strong activation for the stimulus that signaled praise from their owners. Nine of the dogs showed similar neural activation for both the praise stimulus and the food stimulus. And two of the dogs consistently showed more activation when shown the stimulus for food.

The dogs then underwent a behavioral experiment. Each dog was familiarized with a room that contained a simple Y-shaped maze constructed from baby gates: One path of the maze led to a bowl of food and the other path to the dog's owner. The owners sat with their backs toward their dogs. The dog was then repeatedly released into the room and allowed to choose one of the paths. If they came to the owner, the owner praised them.

"We found that the caudate response of each dog in the first experiment correlated with their choices in the second experiment," Berns says. "Dogs are individuals and their neurological profiles fit the behavioral choices they make. Most of the dogs alternated between food and owner, but the dogs with the strongest neural response to praise chose to go to their owners 80 to 90 percent of the time. It shows the importance of social reward and praise to dogs. It may be analogous to how we humans feel when someone praises us."

The experiments lay the groundwork for asking more complicated questions about the canine experience of the world. The Berns' lab is currently exploring the ability of dogs to process and understand human language.

"Dogs are hypersocial with humans," Berns says, "and their integration into human ecology makes dogs a unique model for studying cross-species social bonding."

Citation

Peter F. Cook, Ashley Prichard, Mark Spivak, Gregory S. Berns. Awake canine fMRI predicts dogs’ preference for praisevsfood. 2016. Social Cognitive and Affective Neuroscience, 2016; nsw102 DOI: 10.1093/scan/nsw102

Tuesday, May 26, 2015

Ancient wolf genome reveals an early divergence of domestic dog ancestors



Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone. Earlier genome-based estimates have suggested that the ancestors of modern-day dogs diverged from wolves no more than 16,000 years ago, after the last Ice Age. Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone reported in the Cell Press journal Current Biology on May 21. Earlier genome-based estimates have suggested that the ancestors of modern-day dogs diverged from wolves no more than 16,000 years ago, after the last Ice Age.
The genome from this ancient specimen, which has been radiocarbon dated to 35,000 years ago, reveals that the Taimyr wolf represents the most recent common ancestor of modern wolves and dogs.
"Dogs may have been domesticated much earlier than is generally believed," says Love Dalén of the Swedish Museum of Natural History. "The only other explanation is that there was a major divergence between two wolf populations at that time, and one of these populations subsequently gave rise to all modern wolves." Dalén considers this second explanation less likely, since it would require that the second wolf population subsequently became extinct in the wild.
"It is [still] possible that a population of wolves remained relatively untamed but tracked human groups to a large degree, for a long time," adds first author of the study Pontus Skoglund of Harvard Medical School and the Broad Institute.
The researchers made these discoveries based on a small piece of bone picked up during an expedition to the Taimyr Peninsula in Siberia. Initially, they didn't realize the bone fragment came from a wolf at all; this was only determined using a genetic test back in the laboratory. But wolves are common on the Taimyr Peninsula, and the bone could have easily belonged to a modern-day wolf. On a hunch, the researchers decided to radiocarbon date the bone anyway. It was only then that they realized what they had: a 35,000-year-old bone from an ancient Taimyr wolf.
The DNA evidence also shows that modern-day Siberian Huskies and Greenland sled dogs share an unusually large number of genes with the ancient Taimyr wolf.
"The power of DNA can provide direct evidence that a Siberian Husky you see walking down the street shares ancestry with a wolf that roamed Northern Siberia 35,000 years ago," Skoglund says. To put that in perspective, "this wolf lived just a few thousand years after Neandertals disappeared from Europe and modern humans started populating Europe and Asia."

Citation

Skoglund et al. 2015. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Current Biology, 2015 DOI: 10.1016/j.cub.2015.04.019

Tuesday, February 10, 2015

The Goyet and Eliseevichi skulls were wolves not dogs, and a thought on the wolf-dog transition

The dates for dog domestication have been controversial. Some evidence (the Goyet cave fossils) pointed to the Pleistocene with the skulls suggesting dogs were transitioning from wolves to dogs, while other evidence suggested wolves transitioned to dogs when humans were hunter-gatherers, or during the Neolithic, when humans began living in more permanent settlements and engage in agriculture. Recently discovered Paleolithic fossil skulls, Goyet dated 31,680 +/− 250 YBP in the Czech Republic and Eliseevich 1 MAE (13,905 +/− 55 YBP) from the Bryansk Region in the central Russian Plain, were identified as dogs, establishing the date of dog domestication in the Paleolithic contemporaneous with human hunter-gatherers.

In a new paper Drake et al. (2015) use 3D geometric morphometric analyses to compare the cranial morphology of Goyet and Eliseevichi MAE to that of ancient and modern dogs and wolves. They find the Paleolithic canids are definitively wolves and not dogs. When compared to wolf-like breeds the skulls from Goyet and Eliseevichi MAE lack a cranial flexion and the dorsal surface of their muzzles do not have a concavity near the orbits. Morphologically, the fossils resemble wolves and no longer support the establishment of dog domestication in the Paleolithic.

The analysis in Drake et al. suggest previous measurement methodologies do not provide the resolution needed for distinguishing dogs from wolves and that 3D landmark-based geometric morphometric methods are better suited for the job. Geometric morphometric methods preserve size and shape information and allow for the inclusion of shape variation that cannot be gathered via calipers measurements.

Mitochondrial genomes revealed that Goyet, and other Paleolithic wolves, form the sister to all ancient and modern dogs. The Eliseevichi MAE, was not recovered in a clade with modern dogs but was genetically affiliated with modern wolves from Finland and Russia. The data from Drake et al is in accordance with the genetic evidence and they conclude that the Goyet and Eliseevichi MAE skulls lie within the wolf morphospace, together with the Paleolithic Alaskan wolves and Trou Balleux from Belgium. Drake et al. suggest a reassessment of the classification of the other fossil canids such as the Altai specimen (dated about 33,000 YBP) using 3D landmark-based geometric morphometric methods combined with genetic data, is needed to address the origin of domestication.

The Drake paper’s new classification of Goyet and Eliseevichi MAE as wolves, also suggests a reestablishment of the timing of dog domestication in the Neolithic. If shown to be correct it supports the Coppinger and Coppinger hypothesis that dog domestication occurred in the Neolithic when wolves began to scavenge near human settlements. Their hypothesis suggested human settlements provided a new niche because of the permanent supply of waste food and when combined with the Belyaev's experiment suggested wolf domestication could occur quickly. The establishment of permanent settlements in the Neolithic would have created an environment where sustained selection for tameness could exist for many generations thus setting the stage for dog domestication.

It seems unlikely this is the final word on the date of dog domestication and it simply shows that these skulls were wolves. But, they were wolves associated with archeological sites, not randomly found fossils. Thus the possibility that they were in some way associated with humans suggests there is more to the story. Pre-adaptive behaviors in wolves likely preceded domestication events. Yes, human settlements would have provided a continuous supply of garbage that could be scavenged. But prior to human settlements there was also a likely supply of wasted food that could have been exploited by wolves, paleo-dogs, and other scavengers – leftovers from megafauna kills. Large mammals killed during a hunt were unlikely to be completely consumed by the human hunters. 

Scavenging these large patches of waste nutrients would have brought humans and wolves into close contact – long before humans were living in Neolithic settlements. This scenario is more in line with the genetic results of Wang et al. (2013) suggesting parallel evolution between humans and dogs. The interesting part of this story is not necessarily the date when dogs and wolves diverged, but the events leading up to that date and the prior relationship between the dog’s ancestor and early humans. This was a relationship that likely changed the evolutionary trajectory of both the canine and the primate.

Citations
Drake AG,Coquerelle M, Colombeau G. 2015. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Scientific Reports 2015/02/05/online. http://dx.doi.org/10.1038/srep08299

Wang GD, et al. (2013). The genomics of selection in dogs and the parallel evolution between dogs and humans. Nature communications, 4, 1860.